
SQL 
CHEAT SHEET 



SQL CHEAT SHEET

1!

BASE QUERY 

DATA TYPES IN SQL 

SELECTING SPECIFIC COLUMNS 

SELECT * FROM table_name LIMIT 10; 
It returns every column and the first 10 rows from table_name. 

SELECT * FROM table_name; 
This query returns every column and every row of the table called table_name. 

SELECT column1, column2, column3 FROM table_name; 
This query returns every row of column1, column2 and column3 from table_name. 

In SQL we have more than 40 different data types. But these seven are the most
important ones: 
1.Integer. A whole number without a fractional part. E.g. 1, 156, 2012412
2.Decimal. A number with a fractional part. E.g. 3.14, 3.141592654, 961.1241250
3.Boolean. A binary value. It can be either TRUE or FALSE. 
4.Date. Speaks for itself. You can also choose the format. E.g. 2017-12-31 
5.Time. You can decide the format of this, as well. E.g. 23:59:59 
6.Timestamp. The date and the time together. E.g. 2017-12-31 23:59:59 
7.Text. This is the most general data type. But it can be alphabetical letters only, 
or a mix of letters and numbers and any other characters. E.g. hello, R2D2, 
Tomi, 124.56.128.41 

[your notes]



SQL CHEAT SHEET

2!

ADVANCED FILTERING 

FILTERING (the WHERE CLAUSE) 

Comparison operator

=

<>

!=

<

<=

>

>=

LIKE ‘%expression%’
IN (‘exp1’, ‘exp2’, ‘exp3’)

What does it mean?

Equal to

Not equal to

Not equal to

Less than

Less than or equal to

Greater than

Greater than or equal to

Contains ‘expression’
Contains any of ‘exp1’, ‘exp2’, or ‘exp3’

Comparison operators help you compare two values. (Usually a value that you
define in your query and values that exist in your SQL table.) Mostly, they are
mathematical symbols, with a few exceptions: 

SELECT * FROM table_name WHERE column1 = 'expression'; 
"Horizontal filtering." This query returns every column from table_name - but only
those rows where the value in column1 is 'expression'. Obviously this can be
something other than text: a number (integer or decimal), date or any other data
format, too. 



SQL CHEAT SHEET

3!

You can use more than one condition to filter. For that, we have two
logical operators: OR, AND. 

SELECT * FROM table_name WHERE column2 >= 10; 
It returns every column from table_name, but only those rows where the
value in column2 is greater or equal to 10. 

SELECT * FROM table_name WHERE column3 LIKE ‘%xzy%’; 
It returns every column from table_name, but only those rows where the
value in column3 contains the 'xyz' string. 

A few examples: 
SELECT * FROM table_name WHERE column1 != 'expression'; 
This query returns every column from table_name, but only those rows where
the value in column1 is NOT 'expression'. 

SELECT * FROM table_name WHERE column1 != ‘expression’ AND column3
LIKE ‘%xzy%’; 
This query returns every column from table_name, but only those rows where
the value in column1 is NOT ‘expression’ AND the value in column3 contains
the 'xyz' string. 

SELECT * FROM table_name WHERE column1 != ‘expression’ OR column3 LIKE
‘%xzy%’; 
This query returns every column from table_name, but only those rows where the
value in column1 is NOT ‘expression’ OR the value in column3 contains the 'xyz'
string. 

MULTIPLE CONDITIONS 



SQL CHEAT SHEET

4!

UNIQUE VALUES 

SORTING VALUES 

PROPER FORMATTING 

SELECT * 
FROM table_name 
WHERE column1 != 'expression'

AND column3 LIKE '%xzy%' 
LIMIT 10; 

SELECT DISTINCT(column1) FROM table_name; 
It returns every unique value from column1 from table_name. 

You can use line breaks and indentations for nicer formatting. It won't have any
effect on your output. Be careful and put a semicolon at the end of the query
though! 

SELECT * FROM table_name ORDER BY column1; 
This query returns every row and column from table_name, ordered by column1, in
ascending order (by default). 

SELECT * FROM table_name ORDER BY column1 DESC; 
This query returns every row and column from table_name, ordered by column1, in
descending order. 



SQL CHEAT SHEET

5!

CORRECT KEYWORD ORDER 

SQL FUNCTIONS FOR AGGREGATION 

•COUNT()
•SUM()
•AVG()
•MIN()
•MAX() 

1.SELECT
2.FROM
3.WHERE
4.ORDER BY
5.LIMIT 

SQL is extremely sensitive to keyword order.
So make sure you keep it right: 

A few examples: 
SELECT COUNT(*) FROM table_name WHERE column1 = 'something'; 
It counts the number of rows in the SQL table in which the value in column1 is
'something'. 

SELECT AVG(column1) FROM table_name WHERE column2 > 1000; 
It calculates the average (mean) of the values in column1, only including rows in
which the value in column2 is greater than 1000. 

In SQL, there are five important aggregate functions for data analysts/scientists: 



SQL CHEAT SHEET

6!

SQL GROUP BY 

SELECT column1, SUM(column2) FROM table_name GROUP BY column1; 
This query sums the number of values in column2 - for each group of unique
column1 values. 

SELECT column1, COUNT(column2) FROM table_name GROUP BY
column1; 
This query counts the number of values in column2 - for each group of unique
column1 values. 

The GROUP BY clause is usually used with an aggregate function (COUNT, SUM,
AVG, MIN, MAX). It groups the rows by a given column value (specified after
GROUP BY) then calculates the aggregate for each group and returns that to the
screen. 

SELECT column1, MIN(column2) FROM table_name GROUP BY column1; 
This query finds the minimum value in column2 - for each group of unique column1
values. 

SELECT column1, MAX(column2) FROM table_name GROUP BY column1; 
This query finds the maximum value in column2 - for each group of unique column1
values. 



SQL CHEAT SHEET

7!

SQL JOIN 

SQL ALIASES 

You can rename columns, tables, subqueries, anything. 

You can JOIN two (or more) SQL tables based on column values. 

SELECT column1, COUNT(column2) AS number_of_values FROM
table_name GROUP BY column1; 
This query counts the number of values in column2 - for each group of unique
column1 values. Then it renames the COUNT(column2) column to
number_of_values. 

SELECT * 
FROM table1 
JOIN table2 
ON table1.column1 = table2.column1; 
This joins table1 and table2 values - for every row where the value of column1 from
table1 equals the value of column1 from table2. 

Detailed explanation here: https://data36.com/sql-join-data-analysis-tutorial-ep5/ 



SQL CHEAT SHEET

8!

SQL HAVING 

CORRECT KEYWORD ORDER AGAIN 

1.SELECT
2.FROM
3.JOIN (ON)
4.WHERE
5.GROUP BY
6.HAVING
7.ORDER BY
8.LIMIT 

SELECT column1, COUNT(column2)
FROM table_name 
GROUP BY column1 
HAVING COUNT(column2) > 100; 

SQL is extremely sensitive to keyword order.
So make sure you keep it right: 

Detailed explanation and examples here: https://data36.com/sql-data-analysis-
advanced-tutorial-ep6/ 

This query counts the number of values in column2 - for each group of unique
column1 values. It returns only those results where the counted value is greater
than 100. 

The execution order of the different SQL keywords doesn't allow you to filter with
the WHERE clause on the result of an aggregate function (COUNT, SUM, etc.). This
is because WHERE is executed before the aggregate functions. But that's what
HAVING is for: 



SQL CHEAT SHEET

9!

SUBQUERIES 

SELECT COUNT(*) FROM 
(SELECT column1, COUNT(column2) AS
inner_number_of_values FROM table_name 
GROUP BY column1) AS inner_query 
WHERE inner_number_of_values > 100; 

Detailed explanation here: https://data36.com/sql-data-analysis-advanced-
tutorial-ep6/ 

The inner query counts the number of values in column2 - for each group of unique
column1 values. Then the outer query uses the inner query's results and counts the
number of values where inner_number_of_values are greater than 100. (The result
is one number.) 

You can run SQL queries within SQL queries. (Called subqueries.) Even queries
within queries within queries. The point is to use the result of one query as an input
value of another query. 
Example: 


